

# **CERTIFICATE OF ACCREDITATION**

# **The ANSI National Accreditation Board**

Hereby attests that

# Antibus Scales & Systems, Inc. 705 W. Newton Rd. Bowling Green, OH 43402

Fulfills the requirements of

# **ISO/IEC 17025:2017**

In the fields of

# **CALIBRATION** and **DIMENSIONAL MEASUREMENT**

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.



Jason Stine, Vice President Expiry Date: 11 May 2026 Certificate Number: L2253.02

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



### SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

### Antibus Scales & Systems, Inc.

705 W. Newton Rd. Bowling Green, OH 43402 Bob Bennett 419-872-8628

### CALIBRATION AND DIMENSIONAL MEASUREMRENT

Valid to: May 11, 2026

Certificate Number: L2253.02

## CALIBRATION

#### **Electrical – DC/Low Frequency**

| Parameter/Equipment                                                             | Range                                                                                 | Expanded Uncertainty of<br>Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|
| Resistance Source & Measure <sup>1</sup>                                        | (0 to <mark>55) Ω</mark><br>(55 to 250) Ω<br>(250 to 680) Ω                           | 0.11 Ω<br>0.74 Ω<br>1.0 Ω                    | Fluke Series<br>Process Calibrator              |
| Electrical Simulation of RTD<br>Indicating Devices <sup>1</sup><br>Pt 385 100 Ω | (-180 to 750) °C                                                                      | 0.67 °C                                      | Fluke Series Process Calibrator                 |
| Electrical Simulation of<br>Thermocouple Indicating<br>Devices <sup>1</sup>     | Type K<br>(-195 to 1 260) °C<br>Type J<br>(0 to 760) °C<br>Type T<br>(-195 to 370) °C | 0.87°C<br>0.87°C<br>0.87°C                   | Fluke Series Process Calibrator                 |

#### Length – Dimensional Metrology

| Parameter/Equipment           | Range        | Expanded Uncertainty of<br>Measurement (+/-) <sup>2</sup> | Reference Standard,<br>Method, and/or Equipment |
|-------------------------------|--------------|-----------------------------------------------------------|-------------------------------------------------|
| End Standards                 | Up to 24 in  | (22 + 1.7 <i>L</i> ) μin                                  | Gage Blocks and ULM                             |
| Rules and Scales <sup>1</sup> | (0 to 72) in | 0.016 in                                                  | Gage Blocks, Ruler, and<br>Magnifier            |
| Pin Gages <sup>1</sup>        | Up to 1 in   | 31 µin                                                    | Micrometer                                      |



Version 004 Issued: May 3, 2024

www.anab.org



#### Length – Dimensional Metrology

| Parameter/Equipment                                                                                                              | Range                                                      | Expanded Uncertainty of<br>Measurement (+/-) <sup>2</sup>                                                         | Reference Standard,<br>Method, and/or Equipment   |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Thread Wires<br>(80 to 6) TPI                                                                                                    | (0.007 to 0.097) in                                        | 19 µin                                                                                                            | ULM and Setting Masters                           |
| Gage Blocks                                                                                                                      | (0.005 to 4) in<br>(0 to 24) in                            | (3.1 + 1.5 <i>L</i> ) μin<br>(7.6 + 1.3 <i>L</i> ) μin                                                            | Comparator and Gage Blocks<br>ULM and Gage Blocks |
| OD Cylinder/Plug Gages                                                                                                           | (0 to 12) in<br>(12 to 23) in                              | (13.8 + 2.1D) μin<br>(7.3 + 4.8D) μin                                                                             | ULM and Gage Blocks                               |
| Plain Ring (ID) Gages                                                                                                            | (0.02 to 0.75) in<br>(0.65 to 4) in<br>(4 to 17) in        | $(10.8 + 0.42D) \mu in$<br>$(8.7 + 4D) \mu in$<br>$(21 + 2.1D) \mu in$                                            | ULM/Master Rings/Probe<br>ULM and Master Rings    |
| Spheres and Precision Balls<br>Diameter                                                                                          | (0 to 2) in                                                | (30 + 2.1D) µin                                                                                                   | ULM and Setting Masters                           |
| Thread Plugs<br>Pitch Diameter (80 to 6) TPI<br>Major Diameter                                                                   | (0.007 to 0.097) in<br>Up to 22 in                         | (106 + 2.7 <i>D</i> ) μin<br>(59 + 1.9 <i>D</i> ) μin                                                             | ULM, Setting Masters, and<br>Thread Wires         |
| Adjustable Thread Rings<br>Functional Fit                                                                                        | (0 to 9) in                                                | 587 μin                                                                                                           | Setting Thread Plugs                              |
| Height Gages <sup>1</sup><br>0.000 01 in resolution<br>0.000 5 in resolution<br>0.001 in resolution                              | (0 to 40) in                                               | (64 +2.2L) μin<br>(295 + 0.39L) μin<br>(581 + 0.36L) μin                                                          | Gage Blocks                                       |
| Indicators <sup>1</sup><br>0.000 05 in resolution<br>0.000 5 in resolution<br>0.000 1 in resolution<br>0.001 in resolution       | (0 to 6) in                                                | (50 + 7.4 <i>L</i> ) μin<br>(297 + 0.69 <i>L</i> ) μin<br>(88 + 10.5 <i>L</i> ) μin<br>(588 + 0.21 <i>L</i> ) μin | Gage Blocks and Indicator<br>Stand                |
| Calipers <sup>1</sup><br>0.000 5 in resolution<br>0.001 in resolution                                                            | (0 to 60) in                                               | (291 + 1.2 <i>L</i> ) μin<br>(580 + 0.6 <i>L</i> ) μin                                                            | Gage Blocks                                       |
| OD Micrometers <sup>1</sup><br>0.000 005 in resolution<br>0.000 05 in resolution<br>0.000 1 in resolution<br>0.001 in resolution | (0 to 1) in<br>(0 to 4) in<br>(0 to 12) in<br>(0 to 24) in | $(35 + 0.05L) \mu$ in<br>$(70 + 0.07L) \mu$ in<br>$(84 + 0.83L) \mu$ in<br>$(581 + 0.22L) \mu$ in                 | Gage Blocks                                       |
| ID Micrometers <sup>1</sup><br>0.001 in resolution                                                                               | (0 to 23) in                                               | (638 + 1.13 <i>L</i> ) μin                                                                                        | PLM, Gage Blocks &<br>Plain Rings                 |





#### Length – Dimensional Metrology

| Parameter/Equipment                                                                               | Range                            | Expanded Uncertainty of<br>Measurement (+/-) <sup>2</sup>               | Reference Standard,<br>Method, and/or Equipment |
|---------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|
| Depth Gages <sup>1</sup><br>0.000 1 in resolution<br>0.000 5 in resolution<br>0.001 in resolution | (0 to 12) in                     | (104 + <mark>0.86L) μin</mark><br>(373 + 6.6L) μin<br>(570 + 0.16L) μin | Gage Blocks                                     |
| Micrometer Head<br>0.000 05 in resolution<br>0.000 1 in resolution<br>0.001 in resolution         | (0 to 1) in                      | 72 μin<br>87 μin<br>582 μin                                             | Gage Blocks                                     |
| Bore Gages <sup>1</sup><br>0.000 5 in resolution<br>0.001 in resolution                           | (0.25 to 4) in<br>(0.25 to 4) in | (373 + 39 <i>L</i> ) μin<br>578 μin                                     | Master Rings and Gage Blocks                    |
| Profilometers for Ra <sup>1</sup>                                                                 | (16 to 120) µin                  | 4.7 μin                                                                 | Master surface finish roughness specimen        |
| Surface Roughness Specimen <sup>1</sup><br>Ra                                                     | (2 to <mark>500) µin</mark>      | 2.5 µin                                                                 | Surface Finish Analyzer                         |
| Protractors<br>Angle                                                                              | (0 to 90) °                      | 0.10 °                                                                  | Gage Blocks and Sine Bar                        |
| Angle                                                                                             | (0 to 90) °                      | 0.81 °                                                                  | Optical Comparator                              |

#### Mass and Mass Related

| Parameter/Equipment                                                | Range              | Expanded Uncertainty<br>of Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment |
|--------------------------------------------------------------------|--------------------|----------------------------------------------|-------------------------------------------------|
| Force – Tension and<br>Compression <sup>1,6</sup>                  | (0 to 100 000) lbf | 1d + 0.20% load                              | Load Cells                                      |
| Force Gages & Cells: UUTs with accuracies $\leq 0.1\%^{-1.6}$      | (0 to 10 000) lbf  | 1d + 0.033% load                             | Class F/6 Weights                               |
| Force Gages & Cells: UUTs with accuracies $> 0.1\%$ <sup>1,6</sup> | (0 to 30 000) lbf  | 1d + 0.10% load                              | Class F/6 Weights                               |





#### Mass and Mass Related

| Parameter/Equipment                                        | Range                                                                                | Expanded Uncertainty<br>of Measurement (+/-)                                         | Reference Standard,<br>Method, and/or Equipment                                                    |
|------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Class F/6 and lower Mass<br>Standards                      | 25 lb<br>50 lb<br>500 lb<br>1 000 lb<br>10 kg<br>20 kg<br>25 kg                      | 0.000 52 lb<br>0.001 lb<br>0.011 lb<br>0.021 lb<br>0.23 g<br>0.41 g<br>0.51 g        | Modified Substitution                                                                              |
| Lab Balances <sup>1,6</sup>                                |                                                                                      |                                                                                      |                                                                                                    |
| (Five & Six Place Balances)                                | (0 to 500) g                                                                         | 1d + 0.004 1% of load                                                                | Class 1 Weights and                                                                                |
| (Four Place and Class 1<br>Equivalent Balances)            | (0 to 4 100) g                                                                       | 1d + 0.000 3% of load                                                                | NIST Handbook 44 utilized for<br>the Calibration of Weighing                                       |
| (Class 2 & High Precision<br>Scales)                       | (0 to <mark>4 100) g</mark>                                                          | 0.6d + 0.000 07% of load                                                             | Systems                                                                                            |
| Lab Balances and High<br>Precision Scales <sup>1,6</sup>   | (0 to <mark>35) kg</mark>                                                            | 1d + 0.001 2% of load                                                                | Class 2 & 3 Weights and<br>NIST Handbook 44 utilized for<br>the Calibration of Weighing<br>Systems |
| Lab Balances and High<br>Precision Scales <sup>1,6</sup>   | (0 to 150) kg                                                                        | 1d + 0.000 7% of load                                                                | Class 1 and Class 2 Weights with<br>Substitution to range of use                                   |
| High Resolution Unmarked                                   | (0 to 5 000) kg                                                                      | 1d + 0.012% of load                                                                  | Class F,6 Weights                                                                                  |
| Scales <sup>1,6</sup>                                      | (0 to 50 000) lb                                                                     | 1d + 0.012% of load                                                                  | with Substitution to range of use                                                                  |
| Industrial and Commercial                                  | (0 to 5 000) kg                                                                      | 1d + 0.004% of load                                                                  | Class F,6 Weights                                                                                  |
| Scales <sup>1, 4, 6</sup>                                  | (0 to 200 000) lb                                                                    | 1d + 0.004% of load                                                                  | with Substitution to range of use                                                                  |
| Torque Analyzers –<br>Fixed Points <sup>1</sup>            | (4 to 50) lbf·in<br>(30 to 400) lbf·in<br>(80 to 1 000) lbf·in<br>(20 to 250) lbf·ft | 0.076 % of reading<br>0.062 % of reading<br>0.071 % of reading<br>0.062 % of reading | Torque Arm and<br>Class F/6 Weights                                                                |
| Torque Wrench <sup>1</sup><br>With Accuracies of 0 to 1.5% | (4 lbf·in to 250 lbf·ft)                                                             | 1.2 % of reading                                                                     | Torque Analyzer                                                                                    |
| With Accuracies > 1.5%                                     | (4 lbf·in to 250 lbf·ft)                                                             | 2.6 % of reading                                                                     |                                                                                                    |





#### Thermodynamic

**1** Dimensional

| Parameter/Equipment                                        | Range              | Expanded Uncertainty of<br>Measurement (+/-) | Reference Standard,<br>Method, and/or Equipment |
|------------------------------------------------------------|--------------------|----------------------------------------------|-------------------------------------------------|
| Temperature – Measure <sup>1</sup><br>(Ovens and Freezers) | (-195 to 1 300) °C | 3.1 °C                                       | Fluke Series Process Calibrator                 |

### DIMENSIONAL MEASUREMENT

| Parameter/Equipment                        | Range                     | Expanded Uncertainty of<br>Measurement (+/-) <sup>2</sup> | Reference Standard,<br>Method, and/or Equipment    |
|--------------------------------------------|---------------------------|-----------------------------------------------------------|----------------------------------------------------|
| Dimensional Measurement<br>1D <sup>1</sup> | (0 to 23) in              | (41 + 6.7 <i>L</i> ) μin                                  | PLM, Gage Blocks, Setting<br>Masters, Master Rings |
|                                            | (0 to 24) in              | (75 + 4.8 <i>L</i> ) µin                                  | Height Gage with Precision<br>Indicator            |
|                                            | (0 to <mark>24) in</mark> | 122 µin                                                   | Indicator and Gage Blocks                          |
|                                            | (0 to 4 <mark>) in</mark> | 19 <mark>8 μ</mark> in                                    | Micrometers                                        |
|                                            | (0 to 18) in              | 1 275 µin                                                 | Calipers and Height Gages                          |

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%.

Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.

2. L = Length in inches, D = Diameter in inches

3. High Resolution Unmarked Scales include high resolution scales not complying with the accuracy class parameters of Table 3 of NIST Handbook 44.

4. Industrial Scales include but are not limited to lab balances, bench scales, floor scales, tank and hopper scales, and vehicle scales.

5. This scope is formatted as part of a single document including Certificate of Accreditation No. L2253.02.

6. When the uncertainty of measurement is significantly impacted by the UUT's resolution, then the uncertainty may be expressed as a formula using the UUT's resolution, represented by "d" above.

Jason Stine, Vice President



